

Multi-phase flows Modelling and Simulation

D. Borello, A. Corsini, F. Rispoli, P. Venturini, A. Salvagni, G. Agati Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma

INTERNATIONAL COOPERATION

J. Sesterhenn, G. Camerlengo

Institut fuer Stroemungsmechanik und Technische Akustik, TU Berlin K. Hanjalic

Transport Phenomena Section, Faculty of Applied Sciences, TU Delft

Numerical Tools & Facilities

In-house Computational Codes

- FV Code <u>T-FlowS</u>
 - ✓ Fully unstructured
 - ✓ Incompressible
 - ✓ DNS, LES, URANS, Hybrid LES-RANS
- FE Code <u>*P-Track*</u>
 - ✓ Particle tracking
 - ✓ Particle Cloud tracking
- FD Code <u>NSF</u>
 - ✓ Block-structured
 - ✓ Compressible and Incompressible
 - ✓ DNS, LES
 - ✓ Multiphase, 1-, 2-, 4-way coupling

Open Source Codes

- Open-Foam
 - Moving Grids
 - Compressible

Computational Facilities

- Cluster <u>Iron</u>
 - ✓ 64 cores
 - ✓ 128 GB Ram
- Cluster <u>TU Berlin</u>
 - ✓ 544 cores
 - ✓ 8700 GB Ram
- Access on
 - ✓ ENEA Supercomputing Facilities, Cineca Fermi in Italy
 - ✓ HLRS, HLRN, LRZ, in Germany

Multi-phase flows

Particle Tracking

✓ Single Particle tracking

Cloud Particle tracking

$$m_{p}\frac{d\vec{v}}{dt} = \vec{F}_{D} = -\frac{1}{8}\pi d_{p}^{2}\rho_{f}C_{D}(\vec{u} - \vec{v})|\vec{u} - \vec{v}|$$

- Hypotesis: spherical, non-rotating, non-reacting
- $\begin{cases} \frac{d\langle v_i \rangle}{dt} = -\frac{3}{4d_p} \frac{\rho_f}{\rho_p} C_D(\langle u_i \rangle \langle v_i \rangle) | \langle \vec{u} \rangle \langle \vec{v} \rangle | \\ \langle x_i(t) \rangle = \int_0^t \langle v_i(t) \rangle dt + \langle x_i(0) \rangle \end{cases}$ Gaussian distribution of particles within each cloud $G_D = \frac{24}{\text{Re}_p} (1 + 0.15 \text{Re}_p^{0.687}) \quad \text{(Shiller and Naumann, 1933)}$

Multi-phase flows

Particle Wall Interaction

- ✓ Deposit Model: Thornton and Ning (1998) now extended to take in account temperature effects
 - Baseline: Elastic-plastic adhesion (based on impact mechanics) and Temperature-based adhesion (critical viscosity statistical model)
 - Advanced: Elastic-plastic oblique adhesion and Temperature-based elastic-plastic adhesion
- ✓ Erosion model: Tabakoff (1979)
 - Baseline: Erosion on ductile materials
 - Advanced: Rain erosion of wind turbine blades
 - An in-house Multiphase Solver and Adaptive-mesh Interface (MaSAI) was developed to account for the change in target body geometry during erosion/depositon processes
- Resuspension: Guingo and Minier (2008)
 - Particle lift: FL>Fa
 - Particle slip: FD>ks(Fa-FL)
 - Paricle roll: Mrot>Mres

Prediction of deposit formation in biomass fed boilers

PON-PIBE (Piattaforma Integrata Bioreflui e Energia) Project

Particle tracking approach: original PCT Adhesion model: temperature-based (critical viscosity)

Furnace for panela production (International Cooperation Perù)

Particle tracking approach: modified (local velocity) PCT Adhesion model: temperature-based (critical viscosity)

Prediction of erosion in turbomachinery applications

Particle erosion af a centrifugal fan (Flakt-Woods)

Flow solver: U-RANS Particle tracking approach: PCT Erosion model: semi-empirical (Tabakoff)

SAPIENZA UNIVERSITÀ DI ROMA

Multi-physics flows in Turbomachinery applications

D. Borello, F. Rispoli, P. Venturini, A. Salvagni, G. Agati

Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma

INTERNATIONAL COOPERATION

J. Sesterhenn, G. Camerlengo

Institut fuer Stroemungsmechanik und Technische Akustik, TU Berlin K. Hanjalic

Transport Phenomena Section, Faculty of Applied Sciences, TU Delft

Blade cooling – Overview

Film cooling

Multiphase flow and Blade temperature distribution (w and w/o film cooling:

- ✓ First stage vane blade of General Electric Energy Efficient Engine (E³)
- ✓ Block structured grid, Compressible RANS Open FOAM
- ✓ Expression of Interest from <u>GE Oil & Gas</u>, Included in the <u>JETLAG MSCA-ITN project</u>

Leading edge impingement cooling on a cylindrical surface:

- ✓ Cartesian grid, Compressible DNS NSF code
- ✓ Expression of Interest from <u>GE Oil & Gas</u>, Included in the <u>JETLAG MSCA-ITN project</u>

Nusselt fluctuation on the impinging wall

Rib turbulators

Rib turbulators

- ✓ Cartesian grid, LES T-FlowS code
- ✓ Development of rotation sensitized RANS model
- ✓ Expression of Interest from <u>GE Oil & Gas</u>, cooperation with K. Hanjalic, TU Delft

Streamwise velocity profile at different abscissa. Comparison between corrected and uncorrected model

Blade pitting prediction

- ✓ Cartesian grid, U-RANS T-FlowS/Commercial code
- ✓ <u>GE Oil & Gas</u>, cooperation with K. Hanjalic, TU Delft

Qualitative comparison between actual and simulated eroded blade (pressure side)

Qualitative comparison between actual and simulated eroded blade (suction side)

Energy Systems simulations

D. Borello, F. Rispoli, L. Cedola, P. Venturini., A. Calabriso, G. Agati, A. Alhigaakhani Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma

Carbon Capture and Storage

Calcium Looping in a blast furnace steel mill

Air to BF Steam

SH

	<u>→</u>				
eCO2	0	2.7	5.5	11	Inf.
0.2	3012	3012	3012	3012	3012
0.7	2595	2595	2595	2595	2595
1.4	2405	2378	2359	2359	2359
2.1	2329	2212	2093	2037	2037
2.7	2285	2153	1983	1749	1698

Non-decarbonized steel mill: ~ 6200 ton/year

Ocean Energy

✓ WEC-Sim code <u>PAR –ENEA, PoliTo</u>

Biomass Gasification

Catalyzers for tar reforming

Plant-assisted Fitoremediation

 $\checkmark\,$ Experimental test-rig, cooperation with RESET s.r.l., CNR and ISPRA

Ni-Mayenite catalyzer

Mayenite structure

Catalyzers for tar reforming

Plant-assisted Fitoremediation

✓ Experimental test-rig, cooperation with RESET s.r.l., CNR and ISPRA

<u>DMFCs</u> are liquid powered fuel cells aiming to overcome the typical fuel storage issues associated with hydrogen fuel cells.

Main experimental research topics :

- Electrochemical characterization of single DMFCs and stacks (from mW up to 1.5 kW);
- Evaluation of the main DMFC sources of loss (fuel cross-over, CO₂ channels clogging);
- Evaluation of the temporary and permanent degradation;
- Design of hybrid energy systems for small power size in stand alone applications

DMFC1. 200 mW DMFC under PIV analysis and VI curve, pressure and temperature recording.

DMFC2. Velocity field (PIV result) around a CO_2 bubble in the anode channel at low Re (<8) and high current density.

Projects:

- Ecocell, 2013-2014. Development of a test rig for a 120 W DMFC.
 - a. Assembly and test of single DMFC
 - b. Assembly of the test bench and test of a commercial short stack
- Stealth Energy, 2015-2016. Design of a 1.3 kW DMFC stack and assembly of a test bench for higher power.
- Far Seas, 2016-2017. Design of a DMFC system for an *AIP* (Air Indepndent Propulsion).
 - a. Experimental tests measuring the permanent degradation over *800 h* of functioning on a commercial *1 kW* stack.
 - b. Sizing of a DMFC system for a 240 kW.

DMFC4. *Passive DMFC under high current density.*

DMFC5. Active DMFC assembly

DMFC6. 120 W DMFC stack under test

DMFC7. Test rig for a 1.5 kW DMFC system for 800 h of permanent degradation test

Routine, short circuit and thermal runaway tests on LiFePo batteries

✓ Experimental test-rig, cooperation with Fincantieri and Marina Militare

Environmental studies

Use of recycled canvas from exhaust tyres for dispersed oil absorption

✓ Experimental analysis, with Ecoflora 2 and Regione Lazio

Recycled Fluff

Absorption capability

Intermediate scale

