Gruppo di lavoro RICERCA DIMA - 2017

- PO Casciola, Graziani, Romano
- PA Favini, Marino, Paciorri, Pirozzoli, Stella
- RIC Gualtieri
- RTD Battista, Bernardini, Giacomello, Meloni

1

Topics

Experimental techniques and phase-discrimination strategies for velocity and size measurements in two phase flows

Giampaolo Romano

References, Collaborations & Grants

INGV

- Romano & Zincone, Journal of Vizualization, 2000
- Righetti & Romano, Journal Fluid Mechanics, 2004
- Cagnoli & Romano, Journal of Volcanology & Geot. Res., 2010a, 2010b, 2013, 2015; Journal of Geophysical Research 2012a, 2012b
- Lacagnina; Di Felice, Romano et al., Experiments in Fluids, 2011,
- Capone, Soldati & Romano, Experiments in Fluids, 2014; Physics of Fluids 2015
- Calabriso, Borello, Romano, Applied Energy, 2016
- Righetti, Romano, Nikora, Water Resour. Res., 2015, 2016
- Capone, Miozzi & Romano, Int. Journal of Multiphase Flows, 2017

Why and what to measure in two-phase flows

<u>Why</u>: drag reduction, noise control, sedimentation, pollution and environmental phenomena, fiber suspension, sprays and other industrial applications,

<u>What:</u> velocity components, concentration, size, cross-correlation among them SIMULTANEOUSLY FOR EACH PHASE !!!

Intrusive vs non-intrusive methods

<u>INTRUSIVE</u>: Grids, WMS (Wire Mesh Sensors), = good temporal resolution, very low spatial resolution, OK for industrial applications

<u>**NON-INTRUSIVE</u>**: capacitive and magnetic sensors, ultrasound sensors, ... = sufficient temporal resolution, low spatial resolution \Rightarrow <u>OPTICAL TECHNIQUES</u></u>

Spherical vs non spherical particles

spherical

<u>Single-point methods:</u> Phase Doppler Anemometry (PDA)

<u>Multi-point methods</u>: Global Phase Doppler (GPS) or Interferometric Laser Imaging Droplet Sizing (ILIDS), Image Analysis Methods

Durst et al. 1976, Konig et al. 1986, Kiger & Pan 2000

non-spherical

Single-point methods: PDA: not working

Multi-point methods: ILIDS: not working, Image Analysis Methods: OK

Parsa et al. 2011, Dearing et al. 2013

Multi-point for spherical

GPS & ILIDS: principle

Example

GPS & ILIDS

Lacagnina et al., 2011, in collaboration with CNR-INSEAN, Network of Excellence "Hydro-Testing Alliance" FP6 (2006-2010)

Test Section

comparison of the two cameras

Limitations

GPS & ILIDS: drawbacks

Spherical particles Low particle density

Multi-point for non-spherical

Shadow Imaging

ILIDS AND SHADOW IMAGING

COMPARISON

- slight overestimation of mean values
- overestimation of the standard deviation
- pixel locking due to fringe evaluation

BUT SMALL IMAGED REGIONS

Non-spherical particles – image analysis methods

- Non-spherical particles are imaged as spherical → LOW RESOLUTION
- Non-spherical particles are imaged as nonspherical → HIGH RESOLUTION

<u>SPATIAL RESOLUTION =</u> <u>CAMERA + DIMENSIONS</u>

Example

Synthetic plastic rod fibers (nylon) in turbulent flows

- Density 1.13-1.15 g/cm3
- Mean length L=320 µm
- Mean diameter d=24 μm
- Aspect ratio L/d=13.3

Flow tracers: hollow glass spheres Mean diameter 12 µm, neutrally buoyant

Low resolution

Low spatial resolution: fibers *eqv* to spheres

- <u>Turbulent pipe jet</u>
- Reynolds numbers 3000-30000
- Stokes number ≈ 0.7
- Imaged region ≈ 11 cm
- Camera sensor 1024 pixel
- Spatial resolution $\approx 8 \text{ px/mm}$
- 1 fiber length = 3 pixel

NO FIBERS

WITH FIBERS

Single or multiple cameras

Flow-particle separation: spatial median filter

Kiger & Pan, 2001

Median filter 5x5 attenuates seeding particles

Median Filter

Flow-particle separation: spatial median filter + thresholding

Fig. 4 PDF of light intensity at each pixel for single-phase data, compared to fiber-laden case before (at the *top*) and after (at the *bot-tom*) median filter

19

where ?

Validation

- Separation error by artificial two-phase images:
 1) Acquisition of tracer only and fiber only images
 2) Separate processing and location+velocity results
 3) Artificial multiphase image = tracer only+fiber only
 4) Phase discrimination (median + thresholding)
 5) Combined processing and location+velocity results
 6) Comparison as a function of threshold
- PIV average error on whole field below 3%
- Fibers detection error below 0.1%
- Detected particles 99.8%

Validation

21

Low resolution

Example: turbulent jet with fibers – effect on results

High resolution

High spatial resolution: fibers NOT eqv to spheres

- Backward facing step
- Reynolds numbers 15000
- Stokes number ≈ 0.5
- Imaged region ≈ 1 cm
- Camera sensor 1024 pixel
- Spatial resolution $\approx 100 \text{ px/mm}$
- 1 fiber length ≈ 30 pixel

High resolution

High spatial resolution - orientation

L=fiber length D=fiber diameter

High resolution

High spatial resolution

orientation

 Image threshold + median filter 3×3
 Ellipses labelled as "fibers" if L/d>1.5 and L>9d_{tracer}
 Fibers subtracted from images → <u>HOLES</u>
 Tracer processed with PIV
 Fibers processed with Particle Tracking

Non-spherical particles – multi-point measurements

Example: BFS with fibers – fiber orientation

agreement with upstream flow data correlation with with local velocity ?

Remarks

- Tracers & particles

Use of optical techniques: the problem of tracers Light scattering by particles: position and distance Low concentration and size: follow the fluid without disturbing

-Single-point measurements

Spherical particles: Phase Doppler Non-spherical particles: Shadow Imaging

- Multi-point measurements

Spherical particles: Global Phase Doppler & Interferometry Non-spherical particles: Shadow Imaging & Image Analysis Low spatial resolution: phase discrimination complex High spatial resolution: orientation