Detriti spaziali e realizzazione di nanosatelliti

Fabrizio Piergentili

Attività Principali

✤ Sorveglianza Spaziale

- Gestione campagne osservative
- Analisi dati
- Determinazione di orbita e assetto
- Sistemi di mitigazione/rimozione

Satelliti

- Progetti in corso:
 - URSA MAIOR
 - IKUNS→1KUNS
 - Eaglet
 - LedSat

✤ Sistemi Aerospaziali

- Impianti di bordo di aeromobili
- Torre di controllo vitrtuale

✤ <u>Didattica</u>

- Esperimenti razzi e palloni stratosferici
- CanSat

Sorveglianza spaziale

I Detriti Spaziali

"Space debris are all **man-made objects**, including their fragments and parts, whether their owners can be identified or not, in Earth orbit or re-entering the dense layers of the atmosphere that are **nonfunctional** with no reasonable expectation of their being able to assume or resume their intended functions or any other functions for which they are or can be author"

> (Technical Report on Space Debris in 1999 by UN/COPUOS/STSC United Nations Committee on the Peaceful Uses of Outer Space)

<u>Debris size and effect on spacecraft can be grouped</u> <u>into the following categories:</u>

- (1) Debris less than 0.01cm Causes surface pitting and erosion, which may have significant effect on the spacecraft after long exposures.
 - (2) Debris 0.01cm to 1cm Causes significant impact damage, which can be serious depending on spacecraft system design.
- (3) Debris larger than 1cm Causes significant damage and may cause the catastrophic loss of the spacecraft.
- (4) Larger Debris can hit ground

[NSTCC 1995]The National Science and <u>Technology</u> <u>Council Committee on Transportation Research &</u> <u>Development,</u> <u>"Interagency Report on Orbital Debris 1995</u>

Rientri

"The likelihood of getting hit by one of those fragments is much lower than being hit by lightning."

Rientro satellite UARS

LA STAMPA it BLOG DEI GIORNAL

ATTUALITÀ OPINIONI ECONOMIA SPORT TORINO CULTURA SPETTACOLI MOTORI DONNA CUCINA HOME | POLITICA | ESTERI CRONACHE | COSTUME | TECNOLOGIA | SCIENZA AMBIENTE | LAZAMPA | I

ME NE VADO NELLO SPAZIO	0
ALTE TADO ALLES SI ALIO	Roberto Giovannini
🖓 🖂 🖸 Consiglia 318 🍑 Tweet 15 😽 1	🖬 🔝 😂 🖬

21/9/2011 - CONVOCATA UNA RIUNIONE TRA PROTEZIONE CIVILE E AGENZIA SPAZIALE ITALIANA

UARS, satellite in rientro a Terra

Qualche frammento sull'Italia?

Siria, Unicef: 384

bambini uccisi

27.1.2012 - ore 14.19

MEDIASET OM 24 HOME CRONACA POLITICA MONDO FC Casa Assicurazioni Mutui Pres

PALIO OGNI SETTIMANA 5000 € IN

MONDO ORA PER ORA

LE NOTIZIE DEL GIORNO

22 9 2011

Attentato a Baghdad, 28 morti 1.2012 - ore 10.31

Satellite Nasa verso la terra: forse frammenti pioveranno anche sulle regioni del Nord Italia

2012 - ore 08.30

Uars entrerà nell'atmofera venerdì e l'impatto con il nostro pianeta è previsto in serata

22:42 - I frammenti del vecchio satellite della Nasa, che venerdi entrerà nell'atmosfera terrestre, potrebbero cadere sulle regioni del nord d'Italia. Secondo le simulazioni degli scienziati che stanno analizzando la traiettoria del satellite. l'impatto potrebbe av venire tra le 21.25 e le 22.03 di venerdi.

Il vecchio satellite della Nasa si distruggerà nel momento in cui entrerà a contatto con l'atmosfera del nostro pianeta. La zona di caduta viene individuata in un'area di 200 chilometri che sarà via via ristretta con il nassare delle ore

Analogamente, per l'Italia le probabilità di caduta dei frammenti spaziali si sono ridotte dallo 0,9% allo 0,6%, lasciando aperta una sola "finestra" temporale possibile (inizialmente erano due), tra le 21.25 e le 22.03 di venerdi

CORRELATI

Home » Attualità

Rientro del satellite UARS: continua il monitoraggio

Tutte le Regioni interessate hanno attivato le proprie strutture operative. La previsione di rientro è centrata intorno alle 19:20 di guesta sera; a rischio (anche se la probabilità è molto bassa) il Nord Italia

Venerdi 23 Settembre 2011 - Attack -

Continuano ad arrivare informazioni sul rientro del satellite UARS della NASA. Nell'aggiornamento di ieri sera, il Comitato tecnico scientifico ha modificato lo scenario prospettato precedentemente: sulla base degli ultimi dati disponibili sia sullo stato orbitale che sull'attività solare prevista - spiega il Dipartimento in una nota - la previsione di rientro è centrata intorno alle 19:20 di guesta sera, con una finestra di incertezza che si apre alle 14 di oggi e si chiude alle 3 del 24 settembre.

PROTEZIONE CIVILE.

quotidiano on-line

RICALANUOVA RIPADEIPHON

All'interno di questo arco temporale non è ancora possibile escludere la remota possibilità (aumentata fino all'1,5%) che uno o più frammenti del satellite possano cadere sul territorio italiano. Una novità nell'aggiornamento di ieri sera riguarda la traiettoria che potrà interessare l'Italia, in due finestre temporali: la prima compresa tra le 21:25 e le 22:03, la

seconda tra le 3:34 e le 4:12 L'area a rischio è stata ridotta, e riguarda le regioni Piemonte, Valle d'Aosta, Liguria e Lombardia, le Province Autonome di Trento e Bolzano, parzialmente l'Emilia Romagna (Parma e Piacenza), il Veneto (Verona, Vicenza, Belluno, Treviso) e il Friuli Venezia Giulia (Pordenone e Udine),

Collisioni ed esplosio

Tuble 1. Top To Dicurups, Junuary 2010	Table 1.	Top 10 Breakups,	January 2016
--	----------	------------------	--------------

Rank	Interna Desig	ational nator	Common Name	Year of Breakup	Altitude of Breakup	Cataloged Debris	Debris in Orbit	Assessed Cause of Breakup
1	1999	25	Fengyun-1C	2007	850	3428	2880	intentional collision
2	1993	36	Cosmos 2251	2009	790	1668	1141	accidental collision
3	1994	29	STEP-2 Rocket Body	1996	625	754	84	accidental explosion
4	1997	51	Iridium 33	2009	790	628	364	accidental collision
5	2006	26	Cosmos 2421	2008	410	509	0	unknown
6	1986	19	SPOT-1 Rocket Body	1986	805	498	32	accidental explosion
7	1965	82	OV2-1 / LCS 2 Rocket Body	1965	740	473	33	accidental explosion
8	1999	57	CBERS 1 / SACI 1 Rocket Body	2000	740	431	210	accidental explosion
9	1970	25	Nimbus 4 Rocket Body	1970	1075	376	235	accidental explosion
10	2001	49	TES Rocket Body	2001	670	372	80	accidental explosion
as of 04 Ja	anuary 2016					9137	5059	

Orbital Debris Quarterly News, Vol. 20, Issues 1&2, April 2016

Cosmos Iridium collision

Mitigazione dei detriti spaziali Ing. Fabrizio Piergentili

Presente e Futuro dei detriti spaziali

C. R. Englerta, J. T. Baysb, K. D. Marrc, C. M. Browna, A. C. Nicholasa, T. T. Finnea, Optical orbital debris spotter, Acta Astronautica, Volume 104, Issue 1, November 2014, Pages 99–105

The **Kessler syndrome**, proposed by the NASA scientist Donald J. Kessler in 1978, is a scenario in which the density of objects in low Earth orbit (LEO) is high enough that collisions between objects could cause a cascade—each collision generating space debris which increases the likelihood of further collisions. One implication is that the distribution of debris in orbit could render space exploration, and even the use of satellites, unfeasible for many generations.

Long-Term Sustainability of Activities in Outer Space

Has the current debris population in the LEO region reached the point where the **environment is unstable** and collisions will become the most dominant debris-generating mechanism in the future?

<u>The answer is yes</u>. Even without new launches, collisions will continue to occur in LEO over the next 200 years, primarily driven by the high collision activities in the region between 900 and 1000 km altitudes, and force the debris

Effective Number of Objects ≥10 cm in LEO vs. year (NASA LEGEND model simulations average of 100 Monte Carlo runs per scenario). The periodic variations on the projection region are due to the solar cycle

Cumulative number of Catastrophic Collisions (E>40 J/gr) as a function of time (NASA LEGEND model simulations averaged of 100 Monte Carlo runs per scenario).

> IAA- SG 5-14 Situation Report on Space Debris Compilation of inputs on September 18th, 2016

Contromisure:

Linee Guida mitigazione (disposal, Mission related objects,...) Missioni di rimozione attiva <u>Sorveglianza e collision avoidance</u>

IAA- SG 5-14 Situation Report on Space Debris Compilation of inputs on September 18th , 2016

Network osservatori

Attività di ricerca nel campo dei detriti spaziali al DIMA:

- Sviluppo di sistemi per la gestione delle campagne osservative (ASI-INAF, ESA)
- Progettazione strumentazione per osservazione e mitigazione (NPC-Spacemind)
- Fotometria, Spettrometria, Ricostruzione dell'assetto di oggetti in orbita da misure fotometriche (University of Michigan, Inter Agency Space Debris Committee)

Progettazione strumentazione per osservazione e mitigazione (NPC-Spacemind)

MORAL

1 m class Alt-Az mount

Maximum telescope weight: 500 kg Ultimate telescope weight: 1000 kg Distance between support plates: 1410 mm Lightweight: overall weight 700 kg Maximum speed: >30° deg/sec (up to 45 deg/sec currently tested) Angle measurement resolution directly on the axes: 0,01 arcsec High torque direct drive motors ASCOM compliant communication protocol First quality industrial standard components Unlimited rotation in azimuth Optimized design using aerospace derived analysis methods

Progettazione strumentazione per osservazione e mitigazione (NPC-Spacemind)

ARTICA

(Aerodynamic Reentry Technology In Cubesat Application) is a deorbiting system based on a deployable

ARTICA spec:

2,1 m2 drag sail 25 years IADC guidelines respected for all common Cubesat orbits Stand alone Plug&Play system Low mass, low volume device (0,3U) Sustainable for 1U Easy adaptable structural interface Autonomous kill switches integrated Autonomous RBF integrated Autonomous PWR supply /temporized circuit External redundant opening signal redundancy External redundant opening connector: power peak 2W @ max 30 sec.

Fotometria, Spettrometria, Ricostruzione dell'assetto di oggetti in orbita da misure fotometriche (University of Michigan, Inter Agency Space Debris Committee)

- Instruments used to collect data:
 - 0.6-m MODEST (Chile)
 - 6.5-m Magellan (Chile)
 - 1.5-m Loiano Observatory (Italy)
- **Photometry and spectrometry** as possible indication origin of the debris
- Study of brightness variability as possible indication of rapid changes in attitude of GEO object, performed analysis to process data of GEO object trailed across the field of view
- Attitude reconstruction using joint photometric measurements.

Campagne di identificazione oggetti High Area to Mass Ratio (University of Bern, Michigan University, ISON, Applied Defense)

Objects with high area-to-mass ratios (HAMR) in high-altitude orbits were first discovered in 2004. The orbits of these objects had semimajor axes near the nominal value of geosynchronous objects but eccentricities considerably different from zero [Schildknecht et al. . Optical observations of space debris in high-altitude orbits, "Proceedings of the Fourth European Conference on Space Debris", 2005]

Analisi spettrofotometrica di oggetti in GEO per la determinazione delle caratteristiche fisiche di tali oggetti [Cardona, Seitzer, Rossi, Piergentili, Santoni BVRI Photometric Observations and Light-Curve Analysis of GEO Objects, Article in Advances in Space Research 58(4) · May 2016]

0.6-m MODEST (Chile)

Field of

Read-out

View

time

1.6°x1.6°

16 sec

6.5-m Magellan (Chile)

Detector	LDSS-3
Array	2600x2600 pixels
Quantum Efficiency	93% @ 650 nm
Pixel size	15 micron
Pixel scale	0.189 arc-sec/pixel
Field of View	8.3'x8.3°
Read-out time	16 sec
Operating	

1.5-m Loiano Observatory (Italy)

Detector	EEV LN/1300-EB/1
Array	1300x1340 pixels
Quantum Efficiency	80% @ 500 nm 32% @ 900 nm >50% @ 300 nm
Pixel size	20x20 micron
Pixel scale	0.58 arc-sec/pixel
Field of View	13'x12.6'
Read-out time	18 sec @ 100 KHz

Photometry

- The most fundamental information we can measure about orbiting objects is the amount of energy (flux), in the form of electromagnetic radiation, that is reflected by orbiting object.
- Orbital debris do not have a constant brightness, they give off flashes at typically regular times caused by the **tumbling motion of the object**.
- The metallic surfaces act as mirrors for the sun (specular reflection).
- By using BVRI photometric observations of objects at GEO, give information on the surface characteristics and attitudes of the targets.
 - Comparing photometry data with laboratory sample results gives hints on the physical composition of the GEO targets and hence, possibly the origin of the targets.

Cardona, T., Seitzer, P., Rossi, A., Piergentili, F., & Santoni, F. (2015). BVRI photometric observations and light-curve analysis of GEO objects. Advances in Space Research. DOI: 10.1016/j.asr.2016.05.025

Photometry

* A. Rossi, S. Marinoni, **T. Cardona**, E. Dotto, F. Santoni, F. Piergentili, "Physical characterization of objects in the GEO region with the Loiano 1.5m telescope", 6th European Conference on Space Debris, ESA/ESOC, Darmastad/Germany, 22 April 2013.

Spectrometry

- Permits to determine the chemical compositions, physical properties, and radial velocities of astronomical sources.
- If we can measure the flux in small wavelength intervals, we start to see that the flux is quite irregular on small wavelength scales.
- This is connected to the interaction of light with the atoms and molecules in the object. By studying these "bumps and wiggles" in the flux as a function of wavelength, **it is possible to understand what the object is made of**.

 It is mandatory to keep the object inside the slit (widest 2 arcsec) for at least 4 minutes, by moving the telescope with Non Sidereal Tracking.

Spectrometry

Sample materials are analyzed in laboratory in order to obtain a value to compare the obtained data.

Several problems:

- During exposures of we are seeing complex structures and not a simple surface during our 30 second exposure
- The object is rapidly tumbling and presenting multiple surfaces towards us during the exposure
- Phase angle differences discussed above
- Space weathering effects of surfaces with time

K. J. Abercromby, J. Rapp, D. Bedard, P. Seitzer, T. Cardona, H. Cowardin, E. Barker, S. Lederer, "Comparisons of a Constrained Least Squares Model versus Human-in-the-loop for Spectral Unmixing to Determine Material Type of GEO Debris", Sixth European Conference on Space Debris, Darmstadt- Germany 22-25 April 2013

Spectrometry

P. Seitzer, T. Cardona, S. M. Lederer, H. Cowardin, K. J. Abercromby, E S. Barker, D. Bedard, "Optical Reflection Spectroscopy of GEO Objects", 64rd International Astronautical Conference: 23-27 September 2013 Beijing, China

Brightness variability of GEO objects

Active satellites at GEO are typically attitude controlled. This control ceases in the case of loss of control, or when the satellite is moved to a graveyard orbit, and decommissioned. When one of these occurs, how does the attitude change with time?

- > Rapid changes in brightness are investigated as possible implication of rapid changes in attitude.
- Observations are obtained while the telescope is tracking at the sidereal rate, and the GEO object is trailed across the field of view.
- Analysis of intensity changes along the trail reveals the primary frequencies of the object's brightness variations on time scales of a second or less.
- Minimum change : (seeing disk/rate) ~ 2 arcsec FWHM/15"/sec ~ 0.13 seconds ~ 7 Hz
- Maximum change: MODEST ~ 0.03 Hz Loiano ~ 0.05 Hz

Ricostruzione dell'assetto di oggetti in orbita da misure fotometriche (University of Michigan, Inter Agency Space Debris Committee)

- The used observatory are:
 - MODEST
 - 1.3-m U.S. Naval Observatory Flagstaff Observatory (Arizona, USA)
- The target: GSAT3

Nation: Type / Application: Configuration: Propulsion: Power: Lifetime: Mass: Orbit: India Experimental Communication I-2K bus LAM 2 deployable solar arrays, batteries 7 years (launch date 20.09.2004) 1950 kg (820 kg dry) GEO

Piergentili, F., Santoni, F., Seitzer, P., "Attitude Determination of Orbiting Objects from Lightcurve Measurements ", IEEE Transactions on Aerospace and Electronic Systems (Volume: PP, Issue: 99), 2017, DOI: 10.1109/TAES.2017.2649240

Torques

Satellite motion analysis through virtual model

The three main parts of the system are:

- 3D virtual world which permits to simulate the satellite and to reproduce its lightcurve based on effective observation geometry (observer, satellite, Sun)
- Attitude motion propagator which implements the free rigid body rotation on the basis of initial conditions
- Minimization of residuals, obtained comparing the real and simulated lightcurve, through a global optimization tool based on genetic algorithms

3DOF

Euler

Piergentili, F., Santoni, F., Seitzer, P., "Attitude Determination of Orbiting Objects from Lightcurverties,", IEEE Transactions on Aerospace and Electronic Systems (Volume: PP, Issue: 99), 2017, DOI: 10.11 initial condition 49240

Piergentili, F., Santoni, F., Seitzer, P., "Attitude Determination of Orbiting Objects from Lightcurve Measurements ", IEEE Transactions on Aerospace and Electronic Systems (Volume: PP, Issue: 99), 2017, DOI: 10.1109/TAES.2017.2649240

Simulated RGB lightcurves

With a rotation rate of about 0.5° /s for every axes, lightcurves have been simulated in RGB from Flagstaff and Cerro Tololo

Table 2 - GSAT3 identified initial conditions		
Initial parameter	Value	
Pitch [rad]	3.9495	
Roll [rad]	0.1881	
Yaw [rad]	1.0916	
P [rad/s]	0.00028	
q [rad/s]	0.01454	
r [rad/s]	0.01876	

Light-curves comparison

Piergentili, F., Santoni, F., Seitzer, P., "Attitude Determination of Orbiting Objects from Lightcurve Measurements", IEEE Transactions on Aerospace and Electronic Systems (Volume: PP, Issue: 99), 2017, DOI: 10.1109/TAES.2017.2649240

Dynamical interpretation of the GSAT-3 reconstructed "free-body" attitude motion

- Precession rate: 1.36 deg/sec (0.23rpm)
- Relative spin rate: 8e-3 deg/sec(1.3e-3 rpm)
- Angular momentum unit vector components in J2000: [- 0.69 0.18 - 0.70]
- Angular momentum RA: 166 deg
- Angular momentum DEC: -44 deg

Piergentili, F., Santoni, F., Seitzer, P., "Attitude Determination of Orbiting Objects from Lightcurve Measurements", IEEE Transactions on Aerospace and Electronic Systems (Volume: PP, Issue: 99), 2017, DOI: 10.1109/TAES.2017.2649240
Estensione a UAV

Attività di ricerca nel campo dei detriti spaziali al DIMA:

Punti di forza:

- Possibilità di accedere ad ogni punto della filiera dalla concezione della campagna di misura all'analisi dei dati
- Capacità di interazione hardware/software, capacità progettuali (cupola, montatura, automazione)
- Possibilità di unire competenze nel campo della realizzazione dei satelliti (assetto, materiali...) e progettazione software (realtà virtuale, AG)
- Interazione con gruppi internazionali operanti nel settore (Inter Agency Space Debris Committee)
- Interazione con gruppi nazionali operanti nel settore (AD, CNR, INAF)

Punti di debolezza:

- Poca possibilità di accesso a grandi osservatori (space debris poco considerati nella comunità degli astronomi/astrofisici)
- Mancanza di continuità nelle operazioni

Sviluppi futuri nella ricerca in ambito space debris

- Ricostruzione dell'assetto e delle caratteristiche fisiche sarà nuovo campo di ricerca (fotometria e spettrometria)
- Estensione di misure ottiche ad orbita LEO come controparte alle misure radar grazie a nuovi sistemi a largo campo di vista
- Utilizzo di sistemi in orbita per l'osservazione ottica (star tracker)
- Esportazione delle tecniche di analisi ad altri campi di ricerca: UAV, analisi moto coordinato stormi o sciami

Terza missione

- Progettazione strumentazione e movimentazione → Spin off
- Validazione misure di osservatori usati in ambito Space Situational Awareness (contratto ESA-E-geos)
- Condivisione database o gestione siti (Applied Defense)

Realizzazione di satelliti all'Università di Roma "La Sapienza"

Approccio alla didattica

"Hands-on activities let the students' minds grow and learn based on the experiences and the environment they are exposed to. They learn while discussing, investigating, creating, and discovering with other students. As the students become familiar with the subject they are learning, they begin to make decisions, requiring less teacher support and allowing more interactive learning experiences to occur"

(Cooperstein & Kocevar-Weidinger, 2004).

Satelliti Universitari?

- È un **veicolo spaziale funzionante**, o uno strumento, un payload o un componente. Deve operare nello spazio con i propri mezzi indipendenti di comunicazione e di comando
- **Personale non qualificato** (cioè studenti) hanno partecipato ad una frazione significativa di decisioni chiave di progettazione, integrazione e test, e delle operazioni di volo
- La **formazione di queste persone** è importante quanto (se non più importante) la "missione" del satellite stesso

Satelliti Universitari PRO e CONTRO

• <u>PRO</u>

- Corta vita operativa è OK
- Concetti nuovi e componenti terrestri possono essere provati
- Si assume un alto rischio (il fallimento è un opzione)
- Piccoli gruppi perchè lo sforzo organizzativo e di gestione è minimo

• <u>CONTRO</u>

- E' coinvolto personale senza esperienza
- Frequenti ritardi dovuti ad errori tecnici e di pianificazione

Progetti in corso

URSA MAIOR (QB50-H2020, ASI)

IKUNS (ASI, Kenya, United Nations)

EAGLET (OHB Italia)

SVILUPPO DI UN NANOSATELLITE

***** Progetto

***** Costruzione

***** Test

PROGETTO

- Procedure di progetto di sistemi spaziali
- Programmi CAD per elettronica e struttura
- Analisi di Missione

PROGETTO

Obiettivi educativi:

- Imparare a gestire la documentazione tecnica di un programma spaziale
- Sviluppare la capacità di lavorare in gruppo: gestione dei conflitti, budget, tempo.

PROTOTIPI E TEST

Far volare componenti commerciali a basso costo Sviluppo rapido: Iniziare subito con prototipi per evidanziare criticità

TEST

- Vibrazioni
- Termovuoto

1U Cubesat structure vibration test results

LABORATORY FACILITIES

Laboratory vacuum chamber

Electronics development facility

Laboratory milling machine

Remotely controlled space debris Observatory

Magnetic Field Simulator

Solar panel manufacturing

Lancio Aprile 2017

QB50 si pone l'obiettivo di studiare i parametri della bassa termosfera in-situ (90-320 km) con una costellazione di 50 CubeSats

URSA MAIOR: ESPERIMENTI

Una vela per deorbiting 1.

MEMS MicroPropulsori 2. (MEMIT)

URSA MAIOR

Cubesat IKUNS: Italian-Kenyan University NanoSatellite

CubeSat Team: IKUNS 6U CubeSat

University nanosatellite developed in support of the **Italian-Kenyan cooperation in space activities**, part of an agreement between Sapienza – University of Rome and the Italian and ASI

3D-printed Mock-Up

Activity at Nairobi University: IKUNS

Cubesat Solar Panels 21 December 2016 - h 14:00 - University of Nairobi

implementation of it with a technique achievable in a university facility, experimental tests and validation for the space environment.

Supervisors: Prof. Mwangi Mbuthia Prof. Fabio Santoni Prof. Fabrizio Piergentili

luanacali@alice.it - eleonora marotta@yahoo.it

Da IKUNS ad 1KUNS

Lancio Previsto 2018

UNIVERSITY OF NAIROBI Office of the Vice-Chancellor

Prof. Peter M. F. Mbithi, IOM, EBS, MKVC (Surgery), MKIM, BVM, MSc., (Nbi), MVSc. (Sask), PhD, (Nbi)

Fax: +254-20-2212604/2216030 Email: vc@uonbi.ac.ke Website: www.uonbi.ac.ke Tel: +254-20-3318262, +254 732 020 207 P.O. Box 30197 - 00100 - GPO Nairobi, Kenya

March 31, 2016

United Nations Office for Outer Space Affairs Vienna International Centre P.O. Box 500, A 1400 VIENNA, AUSTRIA

ENDORSEMENT FOR THE APPLICATION

The University of Nairobi based in Nairobi Kenya, and University of Rome (Sapienza) based in Rome Italy, have signed a cooperation agreement. The two main projects to be implemented under this agreement.

IKUNS-PF: 1st Kenyan University Nano Satellite Precursor Flight will be realized in collaboration with University of Rome "La Sapienza" in the framework of the IKUNS ASI-Sapienza program that is part of the cooperation agreement. The IKUNS-PF satellite team will have at its disposal the facilities of University of Rome, including S51 ab (Sameuro E) and Sameuro Satellite software and Satellite s51 ab (Sameuro E).

In this framework, the University of Rome will provide support in terms of contribution to design and development, test and integration facilities and manpower through students, PhD and researchers that will be involved in 1KUNS-PF project, fostering

5 August 2016

Dear Mr. Mbuthia,

United Nations/Japan Cooperation Programme on CubeSat Deployment from the International Space Station (ISS) Japanese Experiment Module (Kibo) "KiboCUBE"

On behalf of the United Nations Office for Outer Space Affairs (OOSA) and the Japan Aerospace Exploration Agency (JAXA), we are pleased to inform you that the proposal ("IKUNS") that you have submitted in response to the Announcement of Opportunity of the United Nations/Japan Cooperation Programme on CubeSat Deployment from the International Space Station (ISS) Japanese Experiment Module (Kibo) "KiboCUBE" has been reviewed and considered favourably by OOSA and JAXA.

Your team will be offered the opportunity to deploy your CubeSat from the International Space Station (ISS) Japanese Experiment Module (Kibo).

Da IKUNS ad 1KUNS

Lancio Previsto 2018 da ISS

1KUNS sarà un volo precursore di IKUNS:

- Test tecnologie critiche sottosistemi di bordo
- Test di payload kenyani (microcamera, pannelli solari)

EAGLET (OHB Italia)

LedSat

Design of a 1U CubeSat equipped with a led-based technology

LedSat 1U CubeSat

In-orbit testing of led-based technology for satellite orbital and attitude determination and telecommunication by means of optical measurements

SAPIENZA SPACE SYSTEMS AND SPACE SURVEILLANCE LABORATORY **3RD SPACE DEBRIS STUDENT OPPORTUNITIES WORKSHOP: LEDSAT** Venerdi 16 Dicembre 2016 - ORE 9.30 SALA DEL CONSIGLIO VIA EUDOSSIANA 18, ROMA 09.30 – 09.45 Welcome address of Academic Authorities PAOLO GAUDENZI - University of Rome "La Sapienza", Head of Mechanical and Aerospace Engineering Department, DIMA **Opening Lectures** 09.45 - 10.05 PATRICK SEITZER - University of Michigan "An Introduction to LEDSAT Project", 10.05 – 10.25 FABRIZIO PIERGENTILI – University of Rome "La Sapienza", S5LAB, DIMA "Space Debris Measurement Activities at University of Rome", 10.25 - 11.25 "Design of the LEDsat nano satellite" - Students of the "Spacecraft Design" course , 11.25 - 11.40 Coffee Break Invited Lectures 11.40 – 12.00 THOMAS SCHILDKNECHT - Astronomical Institute of University of Bern, AIUB "Space Debris activities at the AIUB - Opportunities and challenges related to Small Satellites", 12.00 - 12.20 GIUSEPPE BIANCO - Space Geodesy Centre, ASI "Satellite tracking activities at the ASI Space Geodesy Centre " 12.20 - 13.30 "Round Table on LEDSAT project". Info Contact: DivyaSudha Email:dappu.1709022@studenti.uniroma1.it

Attività di ricerca nel campo dei nanosatelliti universitari al DIMA:

Punti di forza:

- Possibilità di accedere ad ogni punto della filiera dalla concezione del satellite al lancio
- Capacità di progettazione hardware/software
- Interazione con la didattica, visione sistemistica
- Collaborazioni internazionali, stato dell'arte rispetto alle altre università nel mondo

Punti di debolezza:

- Ricerca richiede ingenti finanziamenti
- Attività ad alto rischio (risultati in orbita difficili da ottenere a causa dell'alta mortalità di questiotipi di satelliti)

Sviluppi futuri nella ricerca in ambito nanosatelliti

- LEDSAT (sinergia tra nanosatelliti e space debris)
- Studi su megacostellazioni
- Supporto a paesi emergenti nello sviluppo di un loro piano spaziale nazionale

Terza missione

- Progettazione per aziende esterne di sottosistemi o integrazione
- Servizi per aziende esterne (progettazione di bus multi-pourpose)

Attività Didattiche / gare internazionali

CANSAT Team

DESIGN

SAPIENZA UNIVERSITÀ DI ROMA

CANSAT Team

LAUNCH

SAPIENZA UNIVERSITÀ DI ROMA

CANSAT Team

LAUNCH

SAPIENZA UNIVERSITÀ DI ROMA

REXUS/BEXUS roots

AURORA, Bexus 7

REDEMPTION, Rexus 12

BUGS, Rexus 7

COMPASS, Bexus 9

BEXUS Team: STRATONAV Experiment

Flight Model

Experiment integrated on the BEXUS gondola

CAD Model

BEXUS Team: STRATONAV Experiment

VOR (VHF Omnidirectional Range)

Mission Experiment Expected Results

Sector BEXUS 22/23

VOR service volume limit

AVAILABLE DATA

STRATOSPHERIC FLIGHT HERITAGE

Mission

Experiment

Expected Results

Conclusion

EXPECTED RESULTS

EXPECTED RESULTS

ACCURACY OUTSIDE SSV: ±4 degrees

International Environment

IMPIANTI AERONAUTICI

System level analysis with emphasis on critical components

Power-by-Wire – Analysis of an **Electro-Hydrostatic Actuator**

HVV

Electro-Hydrostatic Actuators (EHAs) analysis and modeling

- Electro-Hydrostatic Actuators (EHAs) are one of the technologic innovations of Power-by-Wire actuation (in the More-Electric Aircraft concept framework), aimed to remove the aircraft hydraulic system and to replace it with electric power buses;
- An EHA can combine improved performance with an overall reliability increase and weight savings.

Electro-Hydrostatic Actuator: principle of operations

MODEL CONFIGURATION

RUDDER ACTUATOR	A340-600	F35-JSF
Actuator type	<u>FAIL SAFE 2/3</u>	<u>TANDEM</u>
Actuator stroke, m	± 0.0546	± 0.0335
Chamber diameter, m	0.083	0.050
	4.2	~

Simulation results

- Stabilized behaviour
- The actuator is de-pressurized when not in use
- The same actuator could be used in different applications (even in different vehicles) only by changing the main cylinder
- The results have been verified by comparison with the F35 rudder EHA build-up and testing campaign

Virtual Control Tower:

Approaching flight object Automatic Trajectory Reconstruction

Tracking Units

Direct Linear Transformation

- Direct linear transformation (DLT) is a method of determining the three dimensional location of an object (or points on an object) in space using views of the object.
 - Calibration is achieved by solving for each view the projection matrix:

Combining the projection matrices, the 3D world coordinates are found by Solving:

Application to UAV

Camera Rig Calibration and 3D Reconstruction

- DLT algorithm calculates the Projection Matrix for each view (3D to 2D correspondence)
- Given the projection matrix pixels can be projected to the word coordinates system

