

Ongoing Projects in the Radio Science Laboratory

Luciano less

with contributions from the RSL Team

Dipartimento di Ingegneria Meccanica e Aerospaziale and CRAS Università La Sapienza, Rome, Italy

RSL activities

Funding Info

Contracts as PI-Principal Investigator or Study Lead (2005-now)

Year	Title	Funding Agency
2005	Design and Development of a SW	ESA
	Correlator for Deep Space Tracking	
	Support	
2006	Attività Scientifiche fase A/B1	ASI
	BepiColombo MORE	
2006	Enhancement of the S/W Correlator for	ESA
	Deep Space Tracking Support	
2007	Enhancement of the S/W Translator for	ESA
	Deep Space Tracking Support	
2009	Cassini-Huygens Fase E2 – Attività scientifiche	ASI
2009	Radio Scienza per BepiColombo e Juno	ASI
	fasi B2/C/D	
2010	Enhancement of the $\triangle DOR$ Software	ESA
	Package	
2011	Interdisciplinary Study on Enhancement of	ESA
	End-to-End Accuracy for Spacecraft Tracking	(GSP Programme)
	Techniques	
2013	Studio degli strumenti scientifici per la missione	ASI
	JUICE – 3GM	
2013	Improving Data Return in Ka-Band by Use of	ESA
	Weather Forecast	
2014	Improvement of Delta-DOR Performances for	ESA
	1 nrad Accuracy for Precise Landing Support	
2015	Radio Scienza per BepiColombo e Juno	ASI
	fasi B2/C/D - Addendum	
2016	Partecipazione italiana alla fase A della missione	ASI
	VERITAS	

As Group Lead of a subcontractor unit (after 2007)

Year	Study/Contract	Agency	Prime
			Contractor
2008	Radiocomm Signals: a "New Way" of Probing the Surf	ESA	GMV
	of Planets		
2009	Radio Tracking of a Landed Spacecraft:	ESA	GMV
	Determination of the Spacecraft Position and the		
	Ephemeris and Orientation in Space"		
2014	HERO: High performance time and frequency link:	ESA	WISER
	microwave		
2014	End-to-End Mission Performance Simulators for	ESA	GMV
	Space Science Missions		
2015	Flexible and Autonomous TT&C Transponders	ESA	Thales Alenia
	for Multi-Mission Applications		Space Italy
2015	CUBATA for Asteroid Impact Mission Cubesat	ESA	GMV
	Opportunity Payloads (COPINS)		

- RSL participation and activities in deep space missions:
 - Cassini
 - BepiColombo
 - Juno
 - JUICE
 - VERITAS (phase A preselected by NASA)
 - CUBATA (S2S tracking cubesats for ESA's AIM mission)
 - Europa Deep Geophysics Explorer (concept for NASA Europa mission)
 - ...
- Tracking systems
 - Error budget analysis
 - New tracking systems architectural design
 - ESA Delta-DOR software development
 - Same Beam Interferometry
 - RadioMetOp (closed collaboration with DIET)
 - Precise time and frequency transfer

Radio Science – Planetary Geodesy

Radio science investigations have been historically diverse and include:

- determination of planetary masses and mass distribution;
- tests of relativistic gravity;
- determination of planetary and satellites rotational state;
- measurements of planetary atmospheres, ionospheres and rings;
- estimation of planetary shapes;
- investigation of the solar wind.

In our lab we focus here

Radio science experiments, depending on the phenomena being investigated, involve measurements of the amplitude, phase and polarization (over a large variety of time scales) of the EM wave used in the space-to-ground radio link.

In deep space communications and radio science experiments, signals use well defined frequency bands in the microwave region of the electromagnetic spectrum

Band	Uplink Frequency (MHz)	Downlink Frequency (MHz)
S	2110-2120	2290-2300
Х	7145-7190	8400-8450
Ka	34200-34700	31800-32300

MISSIONS

Testing General Relativity

• Deflection of light rays, time delay and frequency shift are different manifestation of the solar gravitational potential. In the PPN formalism these effects are controlled by the parameter γ

- Cassini Solar Conjunction Experiment (SCE1) allowed for range-rate residuals accurate to 1.1 μm/s @ 1000 s integration time
 - Multi-frequency link to obtain plasma-free observables
 - Calibration of wet troposphere by Advanced Water vapour radiometers
- x 50 improvement in the estimation of γ

$$\gamma_{\text{Cassini}} = 1 + (2.1 \pm 2.3) \Box 10^{-5} (2003)$$

$$\Box_{\text{Viking}} = 1.000 \pm 0.001$$
 (1979)

Bertotti, B., Iess, L., Tortora, P., 'A test of general relativity using radio links with the Cassini spacecraft' *Nature*, 425, 374, (2003)

Cassini at Saturn

The Geysers, Lakes and Oceans of the Saturnian Moons

Titan Geodesy

Determination of the gravity field and its tidal variations provide crucial information to describe:

- Shape (reference ellipsoid)
- Internal structure (Geoid heights, Moment of inertia and Love number)

Publications:

- Iess, L., Jacobson, R.A., Ducci, M., Stevenson, D.J., Lunine, J.I., Armstrong, J.W., Asmar, S.W., Racioppa, P., Rappaport, N.J., and Tortora, P., "The Tides of Titan", Science, 337, 457, 2012
- Iess, L., Rappaport, N.J., Jacobson, R.A., Racioppa, P., Stevenson, D.J., Tortora, P., Armstrong, J.W., Asmar, S.W., "Gravity Field, Shape, and Moment of Inertia of Titan", Science, 327, no. 5971, 1367 – 1369, March 2010

Geysers on Enceladus

Satellite radius: 252 km

Saturn Gravity

The best configuration to probe the Saturn gravity field is during the **PROXIMAL ORBITS** phase during which the spacecraft will pass between the planet and the rings.

Proximal orbits:

- 22 highly elliptical orbits
- Eccentricity ~ 0.9
- Inclination ~ 62° (on Saturn equator)
- C/A latitude ~ -5.5° to -7.5°
- Altitude : 4000 km 2000 km
- Sun-Earth-Probe angle 90° to 130° (important for Doppler noise)

Juno

Juno Science Goal

SAPIENZA UNIVERSITÀ DI ROMA

Explore the interior structure by mapping the gravity field

- What is the structure inside Jupiter?
- Does Jupiter rotate as a solid body, or is the rotating interior made up of concentric cylinders?
- Is there a solid core, and if so, how large is it?

Juno tracking system

Instrument	KaTS
Manufacturer	Thales Alenia Space - Italia
Allan Deviation	4x10 ⁻¹⁶ @ 1000s
Observables	2-way Doppler
Link	Ka/Ka (34Ghz up / 32.5 GHz down)
Tracking Station	DSS25 34m BWG – Goldstone DSN
Tracking Schedule	C/A +/- 3h
Pass	25 out of 32
Allan Deviation	< 10 ⁻¹⁴ @ 1000s end to end

Juno science orbit

Polar orbit

satisfies science objectives and provides lower radiation environment, continuous solar power, and minimal operational requirements

- 33 orbits
- C/A about 5000 km
- High eccentricity (e=0.947)
- Period 11 days
- Orbit is face-on

Pericentre drift ~ 0.93° per orbit

the apsidal rotation causes the radiation dose to increase significantly as the mission evolves

$$\dot{\omega} = \frac{3nR^{2}J_{2}}{4p^{2}} \{4 - 5sin^{2}(i)\}$$

MMO & MPO on dedicated orbits

MMO orbit optimized for study of magnetosphere
MPO orbit optimized for study of planet itself

- High-accuracy measurements of interior structure
 Full coverage of planet surface at high resolution
 Optimal coverage of polar area
 Resolve ambiguities

 exosphere
 magnetosphere
 - magnetic field

MPO (ESA) Polar orbit Pericenter altitude = 400 km Apocenter altitude = 1500 km Orbital period = 2.3 h MMO (JAXA) Orbita polare Pericenter altitude = 400 km Apocenter altitude = 12000 km Orbital period = 9.2 h

MORE

The Mercury Orbiter Radio-science Experiment (MORE):

- addresses scientific goals in geodesy, geophysics and fundamental physics.
- provides crucial experimental constrains to models of the planet's internal structure and test theories of gravity with unprecedented accuracy
- Assesses the performances of the novel tracking system in precise orbit determination and space navigation

Gravity:

- Gravity field coefficients (SNR \cong 10⁴ \div 10)
- Geoid surface (10 cm)
- Love number k_2 (SNR \approx 50)

Rotation:

- Mercury's obliquity (< 1 arcsec)
- Amplitude of librations in longitude (< 2 arcsec)

Orbit:

- Spacecraft position (10 cm 1 m Mercurycentric; < 10 m Solar System Barycentric)
- Planetary figure (1 part in 10⁷)

Relativity:

- Post-Newtonian parameters γ , β and η
- J_2 of the Sun (2 · 10⁻⁹)
- Time variation of G ($2 \cdot 10^{-13}$ years⁻¹)

Configuration of the onboard radio system

Multi-frequency radio link (two-way)

Target accuracy:

 $\Delta f/f = 10^{-14} \text{ at } 10^3 \text{--} 10^4 \text{s}$ $\Delta \rho = 10 \text{ cm}$

 $\sigma_y = 10^{-14}$ is equivalent to a one-way range rate of 1.5 micron/s The corresponding one-way displacement in 1000 s is 1.5 mm

3GM GRAVITY AND GEOPHYSICS OF JUPITER AND THE GALILEAN MOONS

Principle Investigator: Luciano Iess – Sapienza University of Rome

Co-Principle Investigators: David J. Stevenson – Caltech – USA Yohai Kaspi – Weizmann Institute - Israel

Lead Funding Agency: Agenzia Spaziale Italiana

Juice: Overview

Instruments **JUICE: Jupiter Icy Moons Explorer Narrow Angle Camera** Ice penetrating radar The emergence of habitable worlds around gas giants Wide Angle Camera Submillimeter Wave Instrument Its main objective is the study of the Galilean Visible and Infrared Magnetometer Hyperspectral moons ESA L-mission currently in phase A/B1 **Particle Package** Imaging Spectrometer **Radio and Plasma Wave** Ultraviolet Imaging Spectrometer instrument esa Laser Altimeter **Radio Science Instrument** and Ultrastable Oscillator Ganmede orbit insertion European Space Agency January 2030 prior Ice penetrating radar May 2012 proval Europa Rubys Callisto Fubrs June 2022 Lune 2033 sion **Development**, integration, Jupiter Interplanetary cruise **Europa phase Jupiter tour Ganymede tour** high latitude phase (7.6 years) testing

3GM experiment consists in:

- Gravity science (range and range-rate observables)
- Radio occultations

JUICE gravity science objectives

VERITAS Gravity Instrument Quad Chart

Performance Capabilities	Value	Margin
Doppler Data Quality	5x10 ⁻¹⁵	20% Depends on calibration data
Accommodation Needs	Value	Margin
Power (W)	16/22(*)	20%
Mass (kg)	3.9	20%
Data Rate (Mbits/s)	N/A	N/A
Data Storage (MB)	N/A	N/A

(*) Depending on number of active radio links

	Gravity Instrument Risks		
Risk Item	Mitigation		
Viewing and Tracking Duration	Coverage of planet limited by times HGA is pointed to Earth; study shows very significant improvement in the minimum global resolution from 540 km to 125 km for known gravity field obtained with the baseline coverage plan; improvement from n=35 to n=150.		
DSN Ka-band uplink stations	Design mission to optimize coverage over Goldstone where Ka-band uplink transmitter is available		

- Two wavelength radio links (X- and Ka-bands)
- Utilize HGA and telecom subsystem

Gravity Instrument Heritage

- X-band is a proven and redundant spacecraft communication system
- Ka-band has been developed and tested for the ESA mission BepiColombo to Mercury

MISSION GOALS AND SCENARIO DEFINITION MISSION ARCHITECTURE

- The mission is composed of two CubeSats to be released by AIM
- The CubeSats will orbit the main body with orbital radius in the range 1.5 3 km (left and right figures below). Orbits shall be stable for 7 days TBC
- Orbital periods 17-48 hours
- Measurement acquisition 12hr shifts
- Transfer to dedicated orbit prior to impact
- Transfer back to observation orbit for post impact

2015/11/16 Page 26

Europa Tomography Probe (ET or ETP) or Europa Deep Geophysics Explorer (EDGE)

TRACKING SYSTEMS

Advanced tracking systems

RSL has been the main contractor of a study funded by ESA for the enhancements of the agency's tracking systems

consolidation of the error budget in radio-metric and OD systems by means of a re-analysis of existing data

FINAL GOAL:

identification of the driving noise sources and outline of solutions (at architectural level) to improve current accuracies by one order of magnitude

Observable	Pre	Target accuracy	
Range-rate (two-way)	0.05 to 0.1 mm/s	60 s integration time	0.01 mm/s
Range	1 to 5 m	jitter+bias	0.1 m
DDOR	6 to 15 nrad	For a spacecraft with DOR tones and NNO-CEB baseline (11650 km)	1 nrad

Doppler attainable accuracies - Cassini

European Delta-DOR system: S/W correlator

History, missions supported and results

Dipartimento di Ingegneria Meccanica e Aerospaziale

European Space Agency

DDOR stands for Delta-Differential One Way Ranging

DOR is the measure of the differential phase delay of a spacecraft (S/C) signal, recorded simultaneously at two geographically separated ground stations.

The signal arrival time between two stations.

$$\tau = \frac{1}{c} B \cdot \hat{s} = \frac{1}{c} B \cos \vartheta$$

The measurement is affected by errors that prevent its use for navigation (synchronization between station clocks)

 $DDOR = DOR_{SC} - DOR_{QS}$

In 2006 Sapienza University of Rome received a contract by ESA to develop the DDOR raw data Format Translator in order to enhance the cross agency operability.

ESA-DDOR system: history (1/2)

ESA-DDOR system: history (2/2)

ADVANCED CONCEPTS AND PERSPECTIVES

SBI Measurement Concept

- A *single ground station* transmits a *Ka band* carrier towards two or more, widely separated landers on a celestial body (e.g. Mars or the Moon)
- Identical digital transponders (KaT) onboard the landers retransmit coherently the uplink signal to the ground station
- The *observable quantity is the differential phase* between the signals from each pair of transponders

Multi-station tracking: 10x better Doppler

- Unmodeled motion of the ground antenna's phase center can be a limiting noise source if media propagation noise is calibrated (multi-frequency links and WVR)
- □ The antenna mechanical noise can be reduced by simultaneous tracking of the spacecraft and proper combination of two-way and three-way Doppler measurements (Armstrong et al., 2008)

where:

M = antenna mechanical noise;*T* = tropospheric noise;

 y_s = doppler signal; T = time-of-flight.

C = frequency standard (clock) noise;

$$y_2(t) = [M_2(t) + M_2(t-T)] + [T_2(t) + T_2(t-T)] + [C_2(t) - C_2(t-T)] + y_s$$
 Two-way

 $y_{3}(t) = \begin{bmatrix} M_{3}(t) + M_{2}(t-T) \end{bmatrix} + \begin{bmatrix} T_{3}(t) + T_{2}(t-T) \end{bmatrix} + \begin{bmatrix} C_{3}(t) - C_{2}(t-T) \end{bmatrix} + y_{s} \quad \text{Three-way}$

$$E(t) = y_{3}(t) + y_{3}(t-T) - y_{2}(t-T) = [M_{3}(t) + M_{3}(t-T)] + [T_{3}(t) + T_{3}(t-T)] + [C_{3}(t) + C_{3}(t-T) - 2C_{2}(t-T)] + Y_{c}$$

Transmitting/Receving

Receving only

Mechanical and troposphere noise are due only to the receving antenna.

STE-QUEST: Space-Time Explorer and Quantum Equivalence Space Test

Figure B1: General concept of the STE-QUEST mission. The clock on the satellite is compared with one or more ground clocks as the satellite orbits earth on a highly elliptic orbit. During the perigee the local acceleration of two rubidium isotopes is measured and compared.

Wireless Systems Engineering and Research

